
Transforming data labeling for machine learning success
Labelbox is a leading data training platform for machine learning applications, providing a web service and API that streamlines the annotation and labeling process for companies. Founded in 2018 and headquartered in the Mission District of San Francisco, Labelbox has raised $188.9 million in fundin...
Labelbox offers a flexible vacation policy without counting PTO days, a 401k program, and a health savings account (HSA). Employees enjoy daily lunche...
Labelbox promotes a culture of innovation and ethical responsibility in AI, focusing on addressing bias in data labeling. The company emphasizes produ...

Labelbox • San Francisco Bay Area
At Labelbox, we're building the critical infrastructure that powers breakthrough AI models at leading research labs and enterprises. Since 2018, we've been pioneering data-centric approaches that are fundamental to AI development, and our work becomes even more essential as AI capabilities expand exponentially.
We're the only company offering three integrated solutions for frontier AI development:
As an Applied Research intern at Labelbox, you will design, build, and productionize evaluation and post‑training systems for frontier LLMs and multimodal models. You’ll own continuous, high-quality evals and benchmarks (reasoning, code, agent/tool‑use, long‑context, vision‑language, et al.), create and curate post‑training datasets (human + synthetic), and prototype RLHF/RLAIF/RLVR/RM/DPO‑style training loops to measure and improve real‑world task and agent performance.
At Labelbox Applied Research, we're committed to pushing the boundaries of AI and data-centric machine learning, with a particular focus on advancing human-AI interaction techniques. We believe that high-quality human data and sophisticated human feedback integration methods are key to unlocking the next generation of AI capabilities. Our research team works at the intersection of machine learning, human-computer interaction, and AI ethics to develop innovative solutions that can be practically applied in real-world scenarios.
Labelbox strives to ensure pay parity across the organization and discuss compensation transparently. The expected annual base salary range for United States-based candidates is below. This range is not inclusive of any potential equity packages or additional benefits. Exact compensation varies based on a variety of factors, including skills and competencies, experience, and geographical location.
We believe data will remain crucial in achieving artificial general intelligence. As AI models become more sophisticated, the need for high-quality, specialized training data will only grow. Join us in developing new products and services that enable the next generation of AI breakthroughs.
Labelbox is backed by leading investors including SoftBank, Andreessen Horowitz, B Capital, Gradient Ventures, Databricks Ventures, and Kleiner Perkins. Our customers include Fortune 500 enterprises and leading AI labs.
Your Personal Data Privacy: Any personal information you provide Labelbox as a part of your application will be processed in accordance with Labelbox’s Job Applicant Privacy notice.
Any emails from Labelbox team members will originate from a @labelbox.com email address. If you encounter anything that raises suspicions during your interactions, we encourage you to exercise caution and suspend or discontinue communications.
Apply now or save it for later. Get alerts for similar jobs at Labelbox.